February 6, 2014

Power-Core Withstands Pulsed High Voltages

The development of high-voltage pulsed power systems for both research and commercial applications has created a tricky design problem related to electrical insulation. Ceramics would be the traditional choice for bushings that insulate the metal electrodes in these systems, but ceramics are bulky and expensive to manufacture.

Intech Power-Core™ has emerged as compact, cost-effective alternative to ceramics. This gravity-cast nylon 12 polymer offers a combination of electrical and physical properties that make it uniquely suited to high-voltage pulsed power applications. These include:

When used in a recent experimental design for a pulsed electron accelerator, the Power-Core insulation was cast over the system’s stainless steel electrode to form an insulating bushing. Often these bushings will have to separate different insulating media—for example, vacuum on one side and transformer oil on another. So both low-outgassing and chemical resistance can come into play simultaneously.

One advantage of casting in this application has to do with the interface between the polymer insulation and steel electrode. Casting the polymer over a knurled surface on the electrode creates a seamless mechanical interface that helps produce a stable vacuum around the electrode and prevents any leak paths between the different insulating media.

To date, we’ve helped design and test insulation for pulsed electron sources up to 400 kV with pulse durations from 20 to 30 nanoseconds in vacuum, oil and gas environments. However, our experimental data suggests that Power-Core insulation bushings could withstand pulsed voltages to 1 MV. With more development work, Power-Core bushings could go even further—to voltages in the 5 to 10 MV range.

For more detailed information about our work insulating our pulsed power supplies:Contact an Engineer

U3M Blog Post Cards

3 minute read
| January 16, 2014

Cast Nylons Replace Structural Aluminum and Gluing Delrin Parts

Robotic arms for e-coat systems have traditionally been made from aluminum, whose strength-to-weight ratio made it seem... Read More
3 minute read
| March 28, 2011

Electrically insulated gear box for electrolytic metal deposition

To increase the capacity of their metal deposition furnaces with typically one cathode and one anode, we were approached by... Read More

Subscribe to email updates