Intech Power-Core Thermoplastics Engineering Blog

Cast Nylons Replace Structural Aluminum and Gluing Delrin Parts

Posted by Alexander Bartosch on Jan 16, 2014 10:23:00 AM

P 500 System resized 600

Robotic arms for e-coat systems have traditionally been made from aluminum, whose strength-to-weight ratio made it seem like a good choice for this application. Aluminum, however, has a downside.

Its electrical conductivity allows the arm to attract paint particles whenever the painting system experiences voltage fluctuations. The resulting paint losses quickly build up—typically to more than $300,000 per paint line annually.

To eliminate those losses, a leading paint robot manufacturer and Intech teamed up to engineer an electrically-insulating plastic arm. That engineering proved to be easier said than done for three reasons.

For one, any plastic used in the arm had to offer high-end structural properties and be capable of insulating against 100 kV charges. For another, the part is big—too big to be cost-effectively injection molded in this application. Finally, the part has a challenging geometry.

When looking for a plastic with the right balance of properties, we quickly ruled out common reinforced plastics. Both fiberglass and carbon-fiber reinforced materials would easily have met the structural requirements, but both were too conductive.

Delrin, another possibility, was a suitable insulator, but it was only available in small chunks. The robot manufacturer had also ruled out the possibility of gluing delrin to form the arm.

Ultimately, Intech's knowhow and innovation allowed for a suitable arm to be cast from  Power-Core™ cast nylon 12 and for the last 3 generations of robots has proved to be the best choice for the job. Because Power-core™ met the structural and electrical requirements and could also be cost-effectively cast into large, complex shapes, the manufacturer has been able to successfully file and receive patent protection on 5 aspects of the arm that would not have been possible were it not for Intech engineers.

Plastic Requires Design Changes

Switching from aluminum to plastics did require a rethinking of the arm design to account for differences in tensile strength. With a 40,000 psi tensile strength, aluminum could carry the robot payloads with a 100 x 100 mm cross section. The cast nylon has a tensile strength of 8,800 psi, so the cross section had to be increased and a minimum wall thickness of 15 mm had to be maintained throughout the part.

The finished arm ended up at 120 x 30 x 18 cm at its widest point. It weighs 45 kg and is capable of carrying a 150 kg.

Result: because of the uniqueness of our engineering approach and our ability to push the boundaries of our material supply beyond where other material suppliers could Intech was proud to be rated a sole supplier to the automotive paint robot supplier.

For more details on the design and manufacturing challenges using polymers, please contact us using the form to your left.

 

Contact an Engineer

Tags: washdown application, cast nylon 12, electrically insulated, Intech Corporation, forming nylon, non-hygroscopic, PA12C, PA12G, Cast Nylon, Power-Core material, Nylon 6 vs Nylon12, Nylon engineering, fanuc p700, Fanuc P500, Fanuc p1000, Fanuc P-20ia

Powercore Offers Unique Balance Of Properties

Posted by Alexander Bartosch on Jan 7, 2013 2:40:00 PM

From cheap plastics to the world’s most expensive composites, many types of polymers have been machined, molded or cast into power transmission components.  We’ve focused our development efforts on the use of a proprietary, gravity cast Polymer called Power-Core®.

Thanks to the interplay of its intrinsic physical properties and low-stress casting process, Powercore represents the ideal material choice for power transmission applications. Here’s why:

Remains Stable and Dampens Vibrations.  Power-Core has an unparalleled ability to maintain its physical properties under a broad range of operating conditions. This stability allows us to make highly accurate predictions of the material’s behavior and lifecycle even when the application has variations in moisture, temperature and chemical exposure.

In particular, Power-Core’s stability in persistent high-humidity or total-immersion conditions makes it uniquely well-suited to power transmission applications and sets it apart from other polymers. Unlike Power-Core, most high-performance polymers absorb moisture. As they do, they lose their tensile strength and swell. Power transmission components made from moisture absorbing, or “hygroscopic,” polymers can end up too weak to carry the loads they were designed for and too swollen to work with mating components.

For an idea of how severe the moisture problem can be, consider the difference between Power-Core and the much more common nylon 6. While both are nominally “polyamides,” powercore outperforms other nylon 6 and nylon 12's dramatically as moisture content increases.

Power-Core also exhibits excellent vibration damping characteristics, which contributes to its ability to reduce noise and absorb the shock loads commonly seen by power transmission components.

 

Eliminates Internal Stresses. Power-Core isn’t just a material but also a manufacturing approach that encompasses gravity casting and precision machining. We gravity cast the Power-core over metal hubs or thermally install it over rollers bearings to produce the beginnings of a cam follower, roller or gear. We then precision machine these blanks to form a finished component.

With engineering polymer applications, the interplay between manufacturing methods and the inherent polymer properties matters as much as the choice of the polymer itself.

Power-Core is no exception. In this case, the gravity casting contributes to low internal stress state that gives the polymer an inherently uniform crystalline structure. As a result, Power-Core components have a consistent machining resistance that improves overall machining precision–and allows the material to retain that precision over time. And under external load, the dense crystalline structure helps thwart the stress-induced cracks or swelling that sometimes force molded plastic components to fail prematurely.

 Contact an Engineer

Tags: Power-Core, plastic rollers, Self-lubricating, plastic gears, PA12G, Power-Core material, Nylon 6 vs Nylon12

No Embrittlement on Guide Rollers for Whistler Peak 2 Peak Cable Cars

Posted by Simon Barrell on Mar 31, 2010 1:56:00 PM

When you are hanging a record 1,430 feet above the ground in a heavy cable car you want to be sure that the rollers it is running on don’t suffer from embrittlement at low temperatures (-40°C). The Peak 2 Peak Gondola recently opened in Winter Olympics venue Whistler, British Columbia holds world records for the longest free span between ropeway towers (1.88 miles) and the highest point above the ground—436 meters (those same 1,430 feet).


Cable Car Rollers for Doppe resized 600
Intech Power-Core Roller Mounting for Cable Car


Each of the 28 gondola cabins suspended on the 2.73 mile long cable is carried by a sophisticated roller mounting that has high resistance to abrasion under extreme conditions, as well as sound ultraviolet resistance. Those rollers are made with Intech Power-Core™ material and a rolled aluminum core, and they have a life-span in excess of 10 years to satisfy stringent safety requirements.

If you are lucky enough to spend some time in beautiful Whistler, and travel on the Peak 2 Peak gondola, do so confident in the high fatigue limit of the rollers that are carrying you across the valley. Intech Power-Core™ material is the only existing high-performance plastic which fulfills the broad spectrum of requirements set down by the cable car manufacturer to ensure your safety.


Tags: Power-Core rollers, low temperatures, Power-Core material, aluminum core, embrittlement, fatigue limit, roller mounting, ultraviolet resistance