Intech Power-Core Thermoplastics Engineering Blog

Cast Nylons Replace Structural Aluminum and Gluing Delrin Parts

Posted by Alexander Bartosch on Jan 16, 2014 10:23:00 AM

P 500 System resized 600

Robotic arms for e-coat systems have traditionally been made from aluminum, whose strength-to-weight ratio made it seem like a good choice for this application. Aluminum, however, has a downside.

Its electrical conductivity allows the arm to attract paint particles whenever the painting system experiences voltage fluctuations. The resulting paint losses quickly build up—typically to more than $300,000 per paint line annually.

To eliminate those losses, a leading paint robot manufacturer and Intech teamed up to engineer an electrically-insulating plastic arm. That engineering proved to be easier said than done for three reasons.

For one, any plastic used in the arm had to offer high-end structural properties and be capable of insulating against 100 kV charges. For another, the part is big—too big to be cost-effectively injection molded in this application. Finally, the part has a challenging geometry.

When looking for a plastic with the right balance of properties, we quickly ruled out common reinforced plastics. Both fiberglass and carbon-fiber reinforced materials would easily have met the structural requirements, but both were too conductive.

Delrin, another possibility, was a suitable insulator, but it was only available in small chunks. The robot manufacturer had also ruled out the possibility of gluing delrin to form the arm.

Ultimately, Intech's knowhow and innovation allowed for a suitable arm to be cast from  Power-Core™ cast nylon 12 and for the last 3 generations of robots has proved to be the best choice for the job. Because Power-core™ met the structural and electrical requirements and could also be cost-effectively cast into large, complex shapes, the manufacturer has been able to successfully file and receive patent protection on 5 aspects of the arm that would not have been possible were it not for Intech engineers.

Plastic Requires Design Changes

Switching from aluminum to plastics did require a rethinking of the arm design to account for differences in tensile strength. With a 40,000 psi tensile strength, aluminum could carry the robot payloads with a 100 x 100 mm cross section. The cast nylon has a tensile strength of 8,800 psi, so the cross section had to be increased and a minimum wall thickness of 15 mm had to be maintained throughout the part.

The finished arm ended up at 120 x 30 x 18 cm at its widest point. It weighs 45 kg and is capable of carrying a 150 kg.

Result: because of the uniqueness of our engineering approach and our ability to push the boundaries of our material supply beyond where other material suppliers could Intech was proud to be rated a sole supplier to the automotive paint robot supplier.

For more details on the design and manufacturing challenges using polymers, please contact us using the form to your left.

 

Contact an Engineer

Tags: washdown application, cast nylon 12, electrically insulated, Intech Corporation, forming nylon, non-hygroscopic, PA12C, PA12G, Cast Nylon, Power-Core material, Nylon 6 vs Nylon12, Nylon engineering, fanuc p700, Fanuc P500, Fanuc p1000, Fanuc P-20ia

Moisture Absorption, Swelling in Nylons, except Cast Nylon Powercore

Posted by Simon Barrell on Nov 25, 2009 12:07:00 PM

Moisture absorption is a key factor to consider during nylon material selection. Design engineers need to take account of the application and tolerances because, machined component dimensions for a particular nylon grade will change if they were originally designed for a dry environment but are then used in a humid location. Moisture is absorbed by the part, and at some point when it reaches equilibrium, swelling can occur, and the fact that the dimensions of the part are subsequently altered increases the likelihood of premature part failure.

Injection molding, extrusion, and casting can all be used to form nylon, and the process used will influence material properties. In the case of injection molding, nylon is subjected to high compression and decompression within a short period of time. Correct mold design, timing, and precise pressure control are vital, and accurate thermal history for the part when both inside and outside of the mold should be maintained.

If water is present where extrusion is used in forming a part, severe problems can result. Therefore, moisture content and cooling rates should be monitored rigorously as they will both influence the physical properties of the extrusion.

Extruded rods or slabs can also be susceptible to shrinkage voids that are caused while the inside is in a molten state but the exterior surface begins to solidify. While the interior cools and shrinks under thermal contraction and crystallization, a void forms as the exterior no longer contracts. One solution is for extruders to use controlled water or vacuum quenching to cool formed parts. Note that even where forming processes can be precisely controlled, physical properties and dimensions may change over time when exposed to changing transport and storage conditions.  

Chart - Dimensional change polyamides versus moisture

The diagram shows moisture absorption causes swelling which results in up to 3.3% dimensional change in the nylon 6 family. When designing with nylon 6 or 6/6, this has to be taken into consideration, for example, when calculating backlash in gears, or when storing precision parts for prolonged periods of time in changing environments. For cast nylon powercore such change is negligible, even when permanently immersed in fuels, oils, and chemicals.

Tags: cast nylon 12, moisture absorption, calculating backlash, dimensional change, forming nylon, gear backlash, injection molding, material shrinkage, moisture content, polyamides